

Application example: IDENTIFICATION OF GENOMIC REGIONS SUBJECT TO SELECTION

Juha Kantanen Natural Resources Institute Finland juha.kantanen@luke.fi

Selection patterns and animal genetic resources

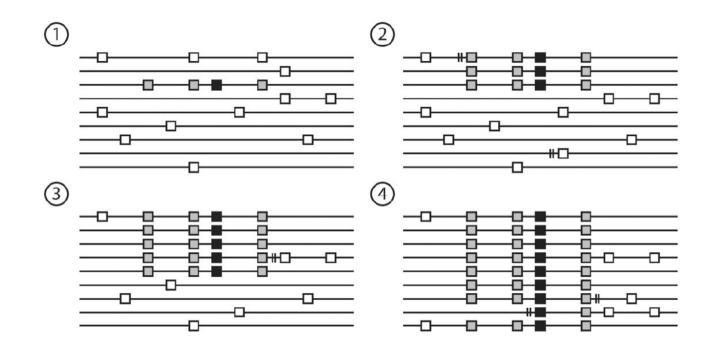
- Domestication, adaptation, breed formation and selective breeding have left specific genetic patterns, "selection signatures," in genomic regions of farm animal breeds.
- The identification of selection signatures has importance in characterization of animal genetic resources.
- Breeds displaying special genetic adaptive traits have typically high priority in the conservation of animal genetic resources.
- The selection signature studies can provide knowledge of quantitative trait loci for production characters and important causal mutations.
- Genome-wide selection-mapping scans may promote our understanding of function of genomes (selection has operated in non-coding genomic regions too).

Effects of selection on genomes in animal populations

The various forms of selection have specific effects

- ✓ Allelic and genotypic frequencies: positive selection increases frequency of an advantageous allele while negative selection removes unfavorable alleles (mutations).
 Balancing selection, maintains multiple alleles in a locus and high genetic diversity.
- ✓ *Hard sweep:* A beneficial mutation arises and rapidly increases in a frequency.
- ✓ Soft sweep: A beneficial mutation has existed already in a population and increases in a frequency.
- ✓ Hitchhiking: An advantageous allele approaches fixation, other alleles (neutral and even mildly deleterious) near the selected allele may sweep too.
- ✓ Linkage disequilibrium: The population can be left with highly correlated alleles in regions of the chromosomel, leading to long haplotypes.
- ✓ The identification of chromosomal regions with this structure is the basis for detecting sweeps.

LUKE ONATURAL RESOURCES INSTITUTE FINLAND


The impact of selection on a 'population' of nine chromosomes

Step 1: A beneficial mutation (black square) occurring on the 3rd chromosome.

Step 2: The mutation begins to spread through the population, with nearby variants (grey) hitchhiking along with it.

Step 3: Haplotypes with the beneficial mutation becoming longer.

Step 4: Fixation of the beneficial mutation.

Methods of detecting selected loci

- The methods commonly used in livestock studies can be classified into two main groups:
 - methods based on <u>intra-population</u> statistics (genomic or DNAmarker data are compared within a population); and
 - those on <u>inter-population</u> statistics (genomic or DNA-marker data are compared between populations).
- <u>The intra-population</u> statistics methods are based on the site frequency spectrum (the *site frequency spectrum* is the distribution of the allele frequencies of a given set of loci, e.g. SNPs, in a population or sample), LD or the identification of genomic regions with reduced variation compared to the genome average.
- <u>The inter-population</u> approaches are based on allele frequency differences and the degree of differentiation among the populations. The level of genetic differentiation can be analysed using single site differentiation or haplotype-based differentiation.

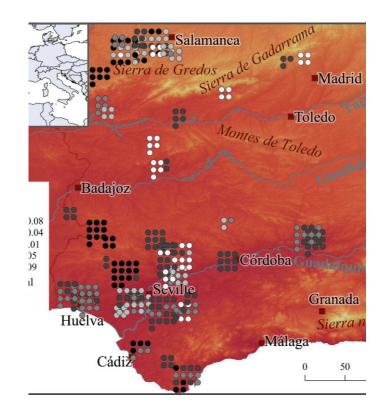
Luke ONATURAL RESOURCES INSTITUTE FINLAND

In the FAO Guidelines, examples of tools for detecting sweeps are given

Program/tool	Method	Reference
	Intra-population statisti	ics
SweeD	Site frequency spectrum (SFS)	Pavlidis P. et al. 2013.
Sweep	relative extended haplotype homozygosity (rEHH)	Sabeti P.C. et al. 2002.
Selscan	Extended Haplotype Homozygosity (EHH), Integrated Haplotype Score (iHS)	Szpiech Z.A., Hernandez R.D. 2014.
сдаТОН	Runs of homozygosity (ROH)	Zhang L, Orloff MS, Reber S, Li S, Zhao Y, Eng C (2013) cgaTOH: Extended Approach for Identifying Tracts of Homozygosity. PLoS ONE 8(3): e57772.
	Inter-population statisti	ics
HierFstat	Fst	de Meeûs T., Goudet J. 2007.
Selscan	Cross population extended haplotype homozygosity (XP-EHH)	Szpiech Z.A., Hernandez R.D. 2014.
HapFLK	Haplotype-based extension of the FLK statistics (hapFLK),	Fariello M.I. et al. 2013. Bonhomme et al. 2010.
	an extension of the Lewontin and Krakauer (LK) test considering a	Lewontin R., Krakauer J. 1973.
	hierarchical population structure (FLK)	

Genomic signals which may not be signatures of selection

- Frequent recombinations may confound efforts to identify sweeps.
- In animal populations, demographic events such as population expansions, migrations, genetic bottlenecks and population subdivision can lead to false selection signals that mimic signatures of selection.



Composite methods

- It is postulated that a composition method combining distinct approaches into a single metric may improve the resolution in detecting sweeps.
- For example, a composite evaluation test, μ statistic for detection of positive selection, which examines genomic regions by quantifying the site frequency spectrum, the levels of LD and the amount of genetic diversity along a chromosome (the tool *RAiSD; Alachiotis N. & Pavlidis P. 2018. Communications Biology 1: 79.*)

Landscape genetics/genomics

- The landscape genomics approach consists of linking genome-wide information to environmental variables to identify valuable genomic regions associated with adaptive advantages.
- Data obtained from genome-wide scans carried out on a number of animals from populations living in different habitats or across ecological clines will be compared to geo-environmental information characterizing these habitats (e.g. yearly amount of precipitation, monthly temperatures, number of days with ground frost, etc.).
- Example of tools: R.SamBada, LFMM2, BAYESCENV

Duruz, S, Sevane, N, Selmoni, O, et al; The NEXTGEN Consortium, The CLIMGEN Consortium. Rapid identification and interpretation of gene–environment associations using the new R.SamBada landscape genomics pipeline. *Mol Ecol Resour*. 2019; 19: 1355– 1365.

Bibliography

Ahrens C.W., Rymer P.D., Stow A. et al. 2018. The search for loci under selection: trends, biases and progress. *Molecular Ecology* 27: 1342–1356.

Bank C., Ewing G.B., Ferrer-Admettla A. et al. 2014. Thinking too positive? Revisiting current methods of population genetic selection inference. Trends in Genetics 30 (12): 540-546,

de Simoni Gouveia J.J., da Silva M.V., Paiva S.R., de Oliveira S.M. 2014. Identification of selection signatures in livestock species. *Genetics and Molecular Biology* 37: 330-42.

Horscroft C., Ennis S., Pengelly R.J. et al. 2019. Sequencing era methods for identifying signatures of selection in the genome, *Briefings in Bioinformatics* 20: 1997–2008.

Passamonti M.M., Somenzi E. Barbato M. et al. 2021. The Quest for Genes Involved in Adaptation to Climate Change in Ruminant Livestock. *Animals* 11: 2833.

Thank you!

You can find us online

Subscribe to our newsletter to stay informed! <u>luke.fi/newsletter</u>

Natural Resources Institute Finland (Luke) Latokartanonkaari 9, FI-00790 Helsinki

